a1.gif (1118 bytes)
a.gif (150 bytes) 1.gif (544 bytes)
  2.gif (445 bytes)
  3.gif (438 bytes)
  4.gif (570 bytes)
  5.gif (769 bytes)
  6.gif (515 bytes)
  7.gif (501 bytes)
  8.gif (450 bytes)


  • The site
  • The RBMK-1000 reactor
  • Events leading to the accident
  • The accident
  • The graphite fire


  • The source term
  • Atmospheric releases
  • Chemical and physical forms
  • Dispersion and deposition
  • Within the former Soviet Union
  • Outside the former Soviet Union


  • Within the former Soviet Union
  • Outside the former Soviet Union


  • The liquidators
  • The evacuees from the 30-km zone
  • Doses to the thyroid gland
  • Whole-body doses
  • People living in the contaminated areas
  • Doses to the thyroid gland
  • Whole-body doses
  • Populations outside the former Soviet Union


  • Acute health effects
  • Late health effects
  • Thyroid cancer
  • Other late health effects
  • Other studies
  • Psychological effects
  • Within the former Soviet Union
  • Outside the former Soviet Union


  • Agricultural impact
  • Within the former Soviet Union
  • Within Europe
  • Environmental impact
  • Forests
  • Water bodies


  • The Sarcophagus
  • Radioactive waste storage sites


  • Operational aspects
  • Scientific and technical aspects



Chapter VI


Agricultural impact

All soil used anywhere for agriculture contains radionuclides to a greater or lesser extent. Typical soils (IA89a) contain approximately 300 kBq/m3 of potassium-40 to a depth of 20 cm. This radionuclide and others are then taken up by crops and transferred to food, leading to a concentration in food and feed of between 50 and 150 Bq/kg. The ingestion of radionuclides in food is one of the pathways leading to internal retention and contributes to human exposure from natural and man-made sources. Excessive contamination of agricultural land, such as may occur in a severe accident, can lead to unacceptable levels of radionuclides in food.

The radionuclide contaminants of most significance in agriculture are those which are relatively highly taken up by crops, have high rates of transfer to animal products such as milk and meat, and have relatively long radiological half-lives. However, the ecological pathways leading to crop contamination and the radioecological behaviour of the radionuclides are complex and are affected not only by the physical and chemical properties of the radionuclides but also by factors which include soil type, cropping system (including tillage),climate, season and, where relevant, biological half-life within animals. The major radionuclides of concern in agriculture following a large reactor accident are iodine-131, caesium-137, caesium-134 and strontium-90 (IA89a). Direct deposition on plants is the major source of contamination of agricultural produce in temperate regions.

While the caesium isotopes and strontium-90 are relatively immobile in soil, uptake of roots is of less importance compared with plant deposition. However, soil type (particularly with regard to clay mineral composition and organic matter content), tillage practice and climate all affect propensity to move to groundwater. The same factors affect availability to plants insofar as they control concentrations in soil solution. In addition, because caesium and strontium are taken up by plants by the same mechanism as potassium and calcium respectively, the extent of their uptake depends on the availability of these elements. Thus, high levels of potassium fertilisation can reduce caesium uptake and liming can reduce strontium uptake.

Within the former Soviet Union

The releases during the Chernobyl accident contaminated about 125,000 km2 of land in Belarus, Ukraine and Russia with radiocaesium levels greater than 37 kBq/m2, and about 30,000 km2 with radiostrontium greater than 10 kBq/m2. About 52,000 km2 of this total were in agricultural use; the remainder was forest, water bodies and urban centres (Ri95). While the migration downwards of caesium in the soil is generally slow (Bo93), especially in forests and peaty soil, it is extremely variable depending on many factors such as the soil type, pH, rainfall and agricultural tilling. The radionuclides are generally confined to particles with a matrix of uranium dioxide, graphite, iron-ceramic alloys, silicate-rare earth, and silicate combinations of these materials. The movement of these radionuclides in the soil not only depends on the soil characteristics but also on the chemical breakdown of these complexes by oxidation to release more mobile forms. The bulk of the fission products is distributed between organomineral and mineral parts of the soil largely in humic complexes. The 30-km exclusion zone has improved significantly partly due to natural processes and partly due to decontamination measures introduced.

There were also large variations in the deposition levels. During 1991 the caesium-137 activity concentrations in the 0-5 cm soil layer ranged from 25 to 1,000 kBq/m3 and were higher in natural than ploughed pastures. For all soils, between 60 and 95 per cent of all caesium-137 was found to be strongly bound to soil components (Sa94). Ordinary ploughing disperses the radionuclides more evenly through the soil profile, reducing the activity concentration in the 0-5 cm layer and crop root uptake. However, it does spread the contamination throughout the soil, and the removal and disposal of the uppermost topsoil may well be a viable decontamination strategy.

The problem in the early phase of an accident is that the countermeasures designed to avoid human exposure are of a restrictive nature and often have to be imposed immediately, even before the levels of contamination are actually measured and known. These measures include the cessation of field work, of the consumption of fresh vegetables, of the pasturing of animals and poultry, and also the introduction of uncontaminated forage. Unfortunately, these measures were not introduced immediately and enhanced the doses to humans in Ukraine (Pr95).

Furthermore, some initial extreme measures were introduced in the first few days of the accident when 15,000 cows were slaughtered in Ukraine irrespective of their level of contamination, when the introduction of clean fodder could have minimised the incorporation of radiocaesium. Other countermeasures, such as the use of potassium fertilisers, decreased the uptake of radiocaesium by a factor of 2 to 14, as well as increased crop yield.

In some podzolic soils, lime in combination with manure and mineral fertilisers can reduce the accumulation of radiocaesium in some cereals and legumes by a factor of thirty. In peaty soils, sand and clay application can reduce the transfer of radiocaesium to plants by fixing it more firmly in the soil. The radiocaesium content of cattle for human consumption can be minimised by a staged introduction of clean feed during about ten weeks prior to slaughter. A policy of allocating critical food production to the least contaminated areas may be an effective common sense measure.

In 1993, the concentration of caesium-137 in the meat of cows from the Kolkhoz in the Sarny region, where countermeasures could be implemented effectively, tended to be much lower than that in the meat from private farms in the Dubritsva region (Pr95). The meat of wild animals which could not be subjected to the same countermeasures had a generally high concentration of radiocaesium. Decontamination of animals by the use of Prussian Blue boli was found to be very effective where radiocaesium content of feed is high and where it may be difficult to introduce clean fodder (Al93). Depending on the local circumstances, many of the above mentioned agricultural countermeasures were introduced to reduce human exposure.

Since July 1986, the dose rate from external irradiation in some areas has decreased by a factor of forty, and in some places, it is less than 1 per cent of its original value. Nevertheless, soil contamination with caesium-137, strontium-90 and plutonium-239 is still high and in Belarus, the most widely contaminated Republic, eight years after the accident 2,640 km2 of agricultural land have been excluded from use (Be94). Within a 40-km radius of the power plant, 2,100 km2 of land in the Poles'e state nature reserve have been excluded from use for an indefinite duration.

The uptake of plutonium from soil to plant parts lying above ground generally constitutes a small health hazard to the population from the ingestion of vegetables. It only becomes a problem in areas of high contamination where root vegetables are consumed, especially if they are not washed and peeled. The total content of the major radioactive contaminants in the 30-km zone has been estimated at 4.4 PBq for caesium-137, 4 PBq for strontium-90 and 32 TBq for plutonium-239 and plutonium-240.

However, it is not possible to predict the rate of reduction as this is dependent on so many variable factors, so that restrictions on the use of land are still necessary in the more contaminated regions in Belarus, Ukraine and Russia. In these areas, no lifting of restrictions is likely in the foreseeable future. It is not clear whether return to the 30 km exclusion zone will ever be possible, nor whether it would be feasible to utilise this land in other ways such as grazing for stud animals or hydroponic farming (Al93). It is however, to be recognised that a small number of generally elderly residents have returned to that area with the unofficial tolerance of the authorities.

Within Europe

In Europe, a similar variation in the downward migration of caesium-137 has been seen, from tightly bound for years in the near-surface layer in meadows (Bo93), to a relatively rapid downward migration in sandy or marshy areas (EC94). For example, Caslano (TI) experienced the greatest deposition in Switzerland and the soil there has fallen to 42 per cent of the initial caesium-137 content in the six years after the accident, demonstrating the slow downward movement of caesium in soil (OF93). There, the caesium-137 from the accident has not penetrated to a depth of more than 10 cm, whereas the contribution from atmospheric nuclear weapon tests has reached 30 cm of depth.

In the United Kingdom, restrictions were placed on the movement and slaughter of 4.25 million sheep in areas in southwest Scotland, northeast England, north Wales and northern Ireland. This was due largely to root uptake of relatively mobile caesium from peaty soil, but the area affected and the number of sheep rejected are reducing, so that, by January 1994, some 438,000 sheep were still restricted. In northeast Scotland (Ma89), where lambs grazed on contaminated pasture, their activity decreased to about 13 per cent of the initial values after 115 days; where animals consumed uncontaminated feed, it fell to about 3.5 per cent. Restrictions on slaughter and distribution of sheep and reindeer, also, are still in force in some Nordic countries.

The regional average levels of caesium-137 in the diet of European Union citizens, which was the main source of exposure after the early phase of the accident, have been falling so that, by the end of 1990, they were approaching pre-accident levels (EC94). In Belgium, the average body burden of caesium137 measured in adult males increased after May 1986 and reached a peak in late 1987, more than a year after the accident. This reflected the ingestion of contaminated food. The measured ecological half-life was about 13 months. A similar trend was reported in Austria (Ha91).

In short, there is a continuous, if slow, reduction in the level of mainly caesium-137 activity in agricultural soil.

Environmental impact


Forests are highly diverse ecosystems whose flora and fauna depend on a complex relationship with each other as well as with climate, soil characteristics and topography. They may be not only a site of recreational activity, but also a place of work and a source of food. Wild game, berries and mushrooms are a supplementary source of food for many inhabitants of the contaminated regions. Timber and timber products are a viable economic resource.

Because of the high filtering characteristics of trees, deposition was often higher in forests than in agricultural areas. When contaminated, the specific ecological pathways in forests often result in enhanced retention of contaminating radionuclides. The high organic content and stability of the forest floor soil increases the soil-to-plant transfer of radionuclides with the result that lichens, mosses and mushrooms often exhibit high concentrations of radionuclides. The transfer of radionuclides to wild game in this environment could pose an unacceptable exposure for some individuals heavily dependent on game as a food source. This became evident in Scandinavia where reindeer meat had to be controlled. In other areas, mushrooms became severely contaminated with radiocaesium.

In 1990, forest workers in Russia were estimated to have received a dose up to three times higher than others living in the same area (IA94). In addition, some forest-based industries, such as pulp production which often recycle chemicals, have been shown to be a potential radiation protection problem due to enhancement of radionuclides in liquors, sludges and ashes. However, harvesting trees for pulp production may be a viable strategy for decontaminating forests (Ho95).

Different strategies have been developed for combatting forest contamination. Some of the more effective include restriction of access and the prevention of forest fires.

One particularly affected site, known as the "Red Forest" (Dz95), lies to the South and West close to the site. This was a pine forest in which the trees received doses up to 100 Gy, killing them all. An area of about 375 ha was severely contaminated and in 1987 remedial measures were undertaken to reduce the land contamination and prevent the dispersion of radionuclides through forest fires. The top 10-15 cm of soil were removed and dead trees were cut down. This waste was placed in trenches and covered with a layer of sand. A total volume of about 100,000 m3 was buried, reducing the soil contamination by at least a factor of ten.

These measures, combined with other fire prevention strategies, have significantly reduced the probability of dispersion of radionuclides by forest fires (Ko90). The chemical treatment of soil to minimise radionuclide uptake in plants may be a viable option and, as has been seen, the processing of contaminated timber into less contaminated products can be effective, provided that measures are taken to monitor the by-products.

Changes in forest management and use can also be effective in reducing dose. Prohibition or restriction of food collection and control of hunting can protect those who habitually consume large quantities. Dust suppression measures, such as re-forestation and the sowing of grasses, have also been undertaken on a wide scale to prevent the spread of existing soil contamination.

Water bodies

In an accident, radionuclides contaminate bodies of water not only directly from deposition from the air and discharge as effluent, but also indirectly by washout from the catchment basin. Radionuclides contaminating large bodies of water are quickly redistributed and tend to accumulate in bottom sediments, benthos, aquatic plants and fish. The main pathways of potential human exposure may be directly through contamination of drinking-water, or indirectly from the use of water for irrigation and the consumption of contaminated fish. As contaminating radionuclides tend to disappear from water quickly, it is only in the initial fallout phase and in the very late phase, when the contamination washed out from the catchment area reaches drinking-water supplies, that human exposure is likely. In the early phase of the Chernobyl accident, the aquaeous component of the individual and collective doses from water bodies was estimated not to exceed 1-2 per cent of the total exposure (Li89). The Chernobyl Cooling Pond was the most heavily contaminated water body in the exclusion zone.

Radioactive contamination of the river ecosystems (Figure 8) was noted soon after the accident when the total activity of water during April and early May 1986 was 10 kBq/L in the river Pripyat, 5 kBq/L in the Uzh river and 4 kBq/L in the Dniepr. At this time, shortlived radionuclides such as iodine-131 were the main contributors. As the river ecosystem drained into the Kiev, then the Kanev and Kremenchug reservoirs, the contamination of water,sediments, algae, molluscs and fish fell significantly.

In 1989, the content of caesium-137 in the water of the Kiev reservoir was estimated to be 0.4 Bq/L, in the Kanev reservoir 0.2 Bq/L, and in the Kremenchug reservoir 0.05 Bq/L. Similarly, the caesium-137 content of Bream fish fell by a factor of 10 between the Kiev and Kanev reservoirs, and by a factor of two between the Kanev and Kremenchug reservoirs to reach about 10 Bq/kg (Kr95). In the last decade, contamination of the water system has not posed a public health problem. However, monitoring will need to be continued to ensure that washout from the catchment area which contains a large quantity of stored radioactive waste will not contaminate drinking-water.

A hydrogeological study of groundwater contamination in the 30-km exclusion zone (Vo95) has estimated that strontium-90 is the most critical radionuclide, which could contaminate drinking-water above acceptable limits in 10 to 100 years from now.

Outside the former Soviet Union, direct and indirect contamination of lakes has caused and is still causing many problems, because the fish in the lakes are contaminated above the levels accepted for sale in the open market. In Sweden, for instance, about 14,000 lakes (i.e., about 15 per cent of the Swedish total) had fish with radiocaesium concentrations above 1,500 Bq/kg (the Swedish guideline for selling lake fish) during 1987. The ecological half-life, which depends on the kind of fish and types of lakes, ranges from a few years up to some tens of years (Ha91).

In the countries of the European Union, the content of caesium-137 in drinking-water has been regularly sampled and reveals levels at, or below, 0.1 Bq/L from 1987 to 1990 (EC94), which are of no health concern. The activity concentration in the water decreased substantially in the years following the accident due largely to the fixation of radiocaesium in the sediments.

Figure 8. Water bodies possibly affected by the radioactive contamination from the Chernobyl accident

In summary,

  • Many countermeasures to control the contamination of agricultural products were applied with varying levels of efficacy. Nevertheless, within the former Soviet Union large areas of agricultural land are still excluded from use and are expected to continue to be so for a long time. In a much larger area, although agricultural and farm animal activities are carried out, the food produced is subject to strict controls and restrictions of distribution and use;

  • Similar problems, although of a much lower severity, were experienced in some countries of Europe outside the former Soviet Union, where agricultural and farm animal production were subjected to controls and limitations for variable durations after the accident. Most of these restrictions have been lifted several years ago. However, there are still some areas in Europe where restrictions on slaughter and distribution of animals are in force. This concerns, for example, several hundreds of thousands of sheep in the United Kingdom and large numbers of sheep and reindeer in some Nordic countries.

  • Produce from forests may continue to be a radiological protection problem for a long time.

  • At present drinking water is not a problem. Contamination of groundwater, especially with strontium-90, could be a problem for the future in the catchment basins downstream of the Chernobyl area.

  • Contaminated fish from lakes may be a long-term problem in some countries.

up.gif (200 bytes) m.gif (2186 bytes)up.gif (200 bytes)